N = solenoid turns/cm or number of turns in pickup coil

 $\stackrel{\rightarrow}{A}$ = magnetic vector potential

D = shock or longitudinal velocity or demagnetizing factor

V = specific volume or oscilloscope voltage

Z = mechanical impedance = $\rho_0 D$ or transmission line impedance

P = longitudinal stress

u = particle velocity

E = energy

S = entropy

 Γ = Grüneisen constant

 $P_{H}^{O}(V)$ = initial Hugoniot

 $\eta = 1 - V/V_0$

P', V', E', n' = thermodynamic state on initial Hugoniot

 $\mathcal{E}(t)$ = emf developed across pickup coils

b = width of pickup coil

 Φ = magnetic flux

 δM = shock induced change in magnetization

 ξ' = shock induced emf across solenoid

 ξ " = emf due to magnetic velocity gauge effect

 \mathcal{E}_{max} , \mathcal{E}_{min} = defined by maximum and minimum in demagnetization profile